Search results for "MESH : Wine"

showing 2 items of 2 documents

Yeast–yeast interactions revealed by aromatic profile analysis of Sauvignon Blanc wine fermented by single or co-culture of non-Saccharomyces and Sac…

2012

International audience; There has been increasing interest in the use of selected non-Saccharomyces yeasts in co-culture with Saccharomyces cerevisiae. The main reason is that the multistarter fermentation process is thought to simulate indigenous fermentation, thus increasing wine aroma complexity while avoiding the risks linked to natural fermentation. However, multistarter fermentation is characterised by complex and largely unknown interactions between yeasts. Consequently the resulting wine quality is rather unpredictable. In order to better understand the interactions that take place between non-Saccharomyces and Saccharomyces yeasts during alcoholic fermentation, we analysed the vola…

MESH : Coculture TechniquesWine aroma[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionWineEthanol fermentation7. Clean energySaccharomycesMESH : SaccharomycesMESH : MetschnikowiaMESH : Volatile Organic CompoundsFood scienceVolatile thiolsCandida0303 health sciencesbiologyfood and beveragesMetschnikowia pulcherrimaCandida zemplininaMESH : WineNon-SaccharomycesAroma of wineTorulaspora delbrueckiiMetschnikowiaMicrobiologyMESH: FermentationMESH: Volatile Organic CompoundsMESH: Coculture TechniquesSaccharomyces03 medical and health sciencesTorulaspora delbrueckiiMESH: CandidaMESH : FermentationBotany030304 developmental biologyWineVolatile Organic CompoundsMESH: SaccharomycesMESH: Metschnikowia030306 microbiologyCandida zemplinina15. Life on landbiology.organism_classificationCoculture TechniquesMESH: WineYeastYeast interactionsFermentation[SDV.AEN]Life Sciences [q-bio]/Food and NutritionMESH : CandidaMetschnikowia pulcherrimaFood ScienceFood Microbiology
researchProduct

Influence of the drying processes of yeasts on their volatile phenol sorption capacity in model wine.

2009

International audience; Volatile phenols, such as 4-ethylphenol, are responsible for a "horsey" smell in wine. Thus, the study of volatile phenol sorption in yeasts, and their subsequent elimination from wine, helps to optimize eco-friendly wine curative processes. Here, we compared the influences of spray drying, lyophilization and evaporative drying at low water activity on yeast, for improving the 4-ethylphenol sorption capacity in a synthetic model wine. The changes that occur in the physico-chemical characteristics of the yeast surface (surface hydrophobicity, electron-donor character and zeta potential) during these drying processes were determined to assess if any correlation exists …

MESH : PhenolsWater activityMESH : WineMESH : Saccharomyces cerevisiaeElectronsWineSaccharomyces cerevisiaeMESH : Models BiologicalMicrobiologyModels Biologicalcomplex mixturesMembrane Potentialschemistry.chemical_compoundFreeze-dryingPhenols4-ethylphenolMESH : AdsorptionZeta potentialMESH : Membrane PotentialsFood scienceDesiccation[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologyDrying processesWine4-EthylphenolChromatographyWaterSorptionGeneral MedicineMESH : Freeze DryingYeastYeastMESH : WaterFreeze DryingchemistrySpray dryingMESH : DesiccationSorptionAdsorptionMESH : HydrophobicityMESH : ElectronsHydrophobic and Hydrophilic InteractionsFood Science
researchProduct